212 research outputs found

    BioGUID: resolving, discovering, and minting identifiers for biodiversity informatics

    Get PDF
    Background: Linking together the data of interest to biodiversity researchers (including specimen records, images, taxonomic names, and DNA sequences) requires services that can mint, resolve, and discover globally unique identifiers (including, but not limited to, DOIs, HTTP URIs, and LSIDs). Results: BioGUID implements a range of services, the core ones being an OpenURL resolver for bibliographic resources, and a LSID resolver. The LSID resolver supports Linked Data-friendly resolution using HTTP 303 redirects and content negotiation. Additional services include journal ISSN look-up, author name matching, and a tool to monitor the status of biodiversity data providers. Conclusion: BioGUID is available at http://bioguid.info/. Source code is available from http://code.google.com/p/bioguid/

    Does behavior reflect phylogeny in swiftlets (Aves: Apodidae)? A test using cytochrome b mitochondrial DNA sequences

    Get PDF
    Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Louse (Insecta : Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable

    Get PDF
    Lice are ectoparasitic insects hosted by birds and mammals. Mitochondrial 12S rRNA sequences obtained from lice show considerable length variation and are very difficult to align. We show that the louse 12S rRNA domain III secondary structure displays considerable variation compared to other insects, in both the shape and number of stems and loops. Phylogenetic trees constructed from tree edit distances between louse 12S rRNA structures do not closely resemble trees constructed from sequence data, suggesting that at least some of this structural variation has arisen independently in different louse lineages. Taken together with previous work on mitochondrial gene order and elevated rates of substitution in louse mitochondrial sequences, the structural variation in louse 12S rRNA confirms the highly distinctive nature of molecular evolution in these insects

    A Satisfiability-based Approach for Embedding Generalized Tanglegrams on Level Graphs

    Get PDF
    A tanglegram is a pair of trees on the same set of leaves with matching leaves in the two trees joined by an edge. Tanglegrams are widely used in computational biology to compare evolutionary histories of species. In this paper we present a formulation of two related combinatorial embedding problems concerning tanglegrams in terms of CNF-formulas. The first problem is known as planar embedding and the second as crossing minimization problem. We show that our satisfiability formulation of these problems can handle a much more general case with more than two, not necessarily binary or complete, trees defined on arbitrary sets of leaves and allowed to vary their layouts

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss

    Get PDF
    Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While duplication–loss (DL) reconciliation leads to a unique maximum-parsimony solution, duplication-transfer-loss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult to infer the true evolutionary history of the gene family. This problem is further exacerbated by the fact that different event cost assignments yield different sets of optimal reconciliations. Here, we present an effective, efficient, and scalable method for dealing with these fundamental problems in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We show that even gene trees with only a few dozen genes often have millions of optimal reconciliations and present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn[superscript 2]) time per sample, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mappings and event assignments and to investigate the impact of varying event costs. We apply our method to a biological dataset of approximately 4700 gene trees from 100 taxa and observe that 93% of event assignments and 73% of mappings remain consistent across different multiple optima. Our analysis represents the first systematic investigation of the space of optimal DTL reconciliations and has many important implications for the study of gene family evolution.National Science Foundation (U.S.) (CAREER Award 0644282)National Institutes of Health (U.S.) (Grant RC2 HG005639)National Science Foundation (U.S.). Assembling the Tree of Life (Program) (Grant 0936234

    Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity

    Get PDF
    Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4). All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3 also accepts a wide range of substrates but with very strong preference for producing benzyl acetate. Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating 268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the multiplicity of AAT genes accounts for the great diversity of esters formed in melon

    Genetic relationships within and among Iberian fescues (Festuca L.) based on PCR-amplified markers

    Full text link
    The genus Festuca comprises approximately 450 species and is widely distributed around the world. The Iberian Penninsula, with more than 100 taxa colonizing very diverse habitats, is one of its main centers of diversification. This study was conducted to assess molecular genetic variation and genetic relatedness among 91 populations of 31 taxa of Iberian fescues, based on several molecular markers (random amplified polymorphic DNA, amplified fragment length polymorphisms, and trnL sequences). The analyses showed the paraphyletic origin of the broad-leaved (subgenus Festuca, sections Scariosae and Subbulbosae, and subgenus Schedonorus) and the fine-leaved fescues (subgenus Festuca, sections Aulaxyper, Eskia, and Festuca). Schedonorus showed a weak relationship with Lolium rigidum and appeared to be the most recent of the broad-leaved clade. Section Eskia was the most ancient and Festuca the most recent of the fine-leaved clade. Festuca and Aulaxyper were the most related sections, in concordance with their taxonomic affinities. All taxa grouped into their sections, except F. ampla and F. capillifolia (section Festuca), which appeared to be more closely related to Aulaxyper and to a new independent section, respectively. Most populations clustered at the species level, but some subspecies and varieties mixed their populations. This study demonstrated the value in combining different molecular markers to uncover hidden genetic relationships between populations of Festuca
    corecore